On general matrices having the Perron-Frobenius Property
نویسندگان
چکیده
منابع مشابه
Ela on General Matrices Having the Perron-frobenius Property∗
A matrix is said to have the Perron-Frobenius property if its spectral radius is an eigenvalue with a corresponding nonnegative eigenvector. Matrices having this and similar properties are studied in this paper as generalizations of nonnegative matrices. Sets consisting of such generalized nonnegative matrices are studied and certain topological aspects such as connectedness and closure are pro...
متن کاملOn general matrices having the Perron-Frobenius Property
A matrix is said to have the Perron-Frobenius property if its spectral radius is an eigenvalue with a corresponding nonnegative eigenvector. Matrices having this and similar properties are studied in this paper as generalizations of nonnegative matrices. Sets consisting of such generalized nonnegative matrices are studied and certain topological aspects such as connectedness and closure are pro...
متن کاملPerron-Frobenius Properties of General Matrices
A matrix is said to have the Perron-Frobenius property if it has a positive dominant eigenvalue that corresponds to a nonnegative eigenvector. Matrices having this and similar properties are studied in this paper. Characterizations of collections of such matrices are given in terms of the spectral projector. Some combinatorial, spectral, and topological properties of such matrices are presented...
متن کاملPaths of matrices with the strong Perron-Frobenius property converging to a given matrix with the Perron-Frobenius property
A matrix is said to have the Perron-Frobenius property (strong Perron-Frobenius property) if its spectral radius is an eigenvalue (a simple positive and strictly dominant eigenvalue) with a corresponding semipositive (positive) eigenvector. It is known that a matrix A with the Perron-Frobenius property can always be the limit of a sequence of matrices A(ε) with the strong Perron-Frobenius prope...
متن کاملEla Paths of Matrices with the Strong Perron-frobenius Property Converging to a given Matrix with the Perron-frobenius Property∗
A matrix is said to have the Perron-Frobenius property (strong Perron-Frobenius property) if its spectral radius is an eigenvalue (a simple positive and strictly dominant eigenvalue) with a corresponding semipositive (positive) eigenvector. It is known that a matrix A with the Perron-Frobenius property can always be the limit of a sequence of matrices A(ε) with the strong Perron-Frobenius prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2008
ISSN: 1081-3810
DOI: 10.13001/1081-3810.1271